Synthesis and characterization of bimetallic complexes, [Co(en)₃][Dy(edta)(OH₂)]₂, [Fe(en)₃][Dy(edta)(OH₂)]₃ and [Ni(en)₃][Dy(edta)(OH₂)]₂·H₂O, and their electrocatalytic activity for reduction of H⁺; Preparation, characterization and magnetic properties of mixed metal oxides nanoparticles, Co₃O₄·Dy₂O₃, Fe₂O₃·Dy₂O₃ and NiO·Dy₂O₃, and their electrocatalytic activity for reduction of CO₂ to CO

Mozhdeh Hashem

m.hashem@ch.iut.ac.ir

Date of Submission: 2014/12/02

Department of Chemistry
Isfahan University of Technology, Isfahan 84156-83111, Iran

Degree: M.Sc Language: Farsi

H. Hadadzadeh, Prof. (hadad@cc.iut.ac.ir) F.Davar, Assistant Prof. (davar@cc.iut.ac.ir)

Abstract

In this thesis, three bimetallic complexes of Dy(III) with Co(II), Fe(III) or Ni(II), [Co(en)₃][Dy(edta)(OH₂)]₂, [Fe(en)₃][Dy(edta)(OH₂)]₃ and [Ni(en)₃][Dy(edta)(OH₂)]₂·H₂O, (where en= ethylenediamine and edta⁴⁻= ethylenediaminetetraacetato), were synthesized and characterized by elemental analysis, FT-IR, UV-Vis and TGA/DTA techniques. The electrocatalytic activity of the bimetallic complexes for reduction of H⁺ was investigated by cyclic voltammetry in sulfuric acid solution.

The bimetallic complexes were used for preparation of three mixed metal oxides nanoparticles, $Co_3O_4 \cdot Dy_2O_3$, $Fe_2O_3 \cdot Dy_2O_3$ and $NiO \cdot Dy_2O_3$, using calcination method at three different temperatures (500,600 and 800 °C). The nanoparticles were characterized by FT-IR, UV-Vis, FE-SEM and XRD. Their particle size is in the range of 10-40 nm. The electrocatalytic activity of the nanoparticles for electroreduction of CO_2 to CO was also studied by cyclic voltammetry in CH_3CN . In addition, the magnetic property of the nanoparticles was investigated by superconductive quantum interface devise (SQUID). The result show a paramagnetic behaviour for three nanoparticles.

Key words:

Mixed metal oxides nanoparticles, Dy(III) complex, Co(II) complex, Fe(III) complex, Ni(II) complex, Cyclic voltammetry, Electrocatalytic activity, Reduction of CO₂, Magnetic properties